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Borel-Tits conjecture Statement of conjecture

Borel-Tits conjecture, original

Conjecture (BT, 1973)
Let G and G ′ be algebraic groups defined over infinite fields k and k ′, respectively. If
ρ : G(k)→ G ′(k ′) is any abstract homomorphism such that ρ(G+) is Zariski-dense in G ′(k ′),
then there exists a commutative finite-dimensional k ′-algebra A and a ring homomorphism
f : k → A such that ρ = σ ◦ rA/k′ ◦ F with σ a morphism of algebraic groups.

G(k) G ′(k ′)

GA(A) RA/k′(GA)(k ′)

ρ

F rA/k′

∼=

σ

F : G(k)→ GA(A) is induced by f , and rA/k′ : GA(A)→ RA/k′(GA)(k ′) is the canonical
isomorphism.
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Borel-Tits conjecture Statement of conjecture

Borel-Tits conjecture, restated

Conjecture (BT, 1973)
Let G and G ′ be algebraic groups defined over infinite fields k and k ′, respectively. If
ρ : G(k)→ G ′(k ′) is any abstract homomorphism such that ρ(G+) is Zariski-dense in G ′(k ′),
then there exists a commutative finite-dimensional k ′-algebra A and a ring homomorphism
f : k → A such that ρ = σ ◦ F with σ a morphism of algebraic groups.

G(k) G ′(k ′)

GA(A)

ρ

F σ

A factorization of this form is called a standard description of ρ.
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Borel-Tits conjecture Known cases

Who When Case
Steinberg 1968 G = G ′ Chevalley group with irreducible root system,

k perfect, ρ abstract automorphism
Tits 1972 k = k ′ = R
Borel, Tits 1973 G absolutely simple, simply-connected, k-isotropic,

and G ′ absolutely simple,
another version with G ′ reductive, technical

Weisfeiler 1982 G ∼= G ′ absolutely simple, simply-connected, anisotropic,
split by quadratic extension, ρ abstract isomorphism

Seitz 1997 char k > 0 and k perfect
L. Lifschitz, 2001 G absolutely simple simply-connected Chevalley group,
A. Rapinchuk char k = 0, Ru(G ′) commutative

I. Rapinchuk 2011 G(k) split, k ′ algebraically closed, char k ′ = 0
I. Rapinchuk 2013 G = SLn,D, n ≥ 3, k ′ algebraically closed, char k ′ = 0,

D f.d. central division algebra over char = 0
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Borel-Tits conjecture New result for SU2n

Description of SU2n(L, h)

Let L/k be a quadratic extension in char = 0. Let σ ∈ Gal(L/k) be the nontrivial element,
denoted σ(x) = x . For a k-algebra R, extend σ to RL = R ⊗k L by acting on the L part.
Fix n ≥ 2 and let h be a skew-hermitian form of maximal Witt index on L2n. Let
G = SU2n(L, h) be the isometry group of h.
We can choose an L-basis of L2n so that the matrix of h is

H =


0 −1
1 0

. . .
0 −1
1 0


Then given a k-algebra R, the group of R-points of G is identified with

G(R) = {X ∈ SL2n(RL) : X ∗HX = H}

X ∗ = X t is the conjugate transpose.
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Borel-Tits conjecture New result for SU2n

New result for SU2n(L, h)

Theorem (I. Rapinchuk and R, 2021)
Let G = SU2n(L, h) and let K be an algebraically closed field of characteristic zero. Given
abstract homomorphism ρ : G(k)→ GLm(K ), set H = ρ(G(k)). If Ru(H) is commutative,
then there exists a commutative finite-dimensional K-algebra A, a ring homomorphism
f : k → A with Zariski-dense image, and a morphism of algebraic K-groups σ : G(A)→ H
such that ρ = σ ◦ F , where F : G(k)→ G(A) is the group homomorphism induced by f .

G(k) GLm(K )

G(A)

ρ

F σ
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Methods involved in the proof Elementary subgroup and Steinberg group

Elementary subgroups

Fix a commutative unital ring R.

Definition (Petrov and Stavrova)
Let G be a reductive algebraic group over R. Let P ⊂ G be a parabolic subgroup with
unipotent radical UP and Levi subgroup LP , and let P− be the opposite parabolic subgroup
(with respect to LP). The elementary subgroup EP(R) is the subgroup of G(R) generated
(as an abstract group) by UP(R) and UP−(R).

Theorem (Petrov and Stavrova, 2008)
Let G be a reductive algebraic group over R. Assume that for any maximal ideal M ⊂ R all
irreducible components of the relative root system of GRM have rank ≥ 2. Then EP(R) does
not depend on the choice of a strictly proper parabolic subgroup P. In particular,
E (R) = EP(R) is normal in G(R).
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Methods involved in the proof Elementary subgroup and Steinberg group

Relative root subgroup embeddings

Let G = SU2n(L, h), fix a maximal k-split torus S. Let Φk ⊂ X ∗(S) be the relative root
system (type Cn). For α ∈ Φk , there exists a vector k-group scheme Vα and a closed
embedding of schemes Xα : Vα → G , such that for any k-algebra R:

1 E (R) is generated by the elements Xα(v) for all α ∈ Φk and all v ∈ Vα(R).
2 Xα(v) · Xα(w) = Xα(v + w) for all v ,w ∈ Vα(R).
3 s · Xα(v) · s−1 = Xα

(
α(s)v

)
for all s ∈ S(R), v ∈ Vα(R).

4 (Chevalley commutator formula) For any α, β ∈ Φk such that α 6= ±β, and for all
u ∈ Vα(R), v ∈ Vβ(R),[

Xα(u),Xβ(v)
]

=
∏

i ,j≥1
iα+jβ∈Φk

Xiα+jβ
(
Nαβ

ij (u, v)
)

for some polynomial maps Nαβ
ij : Vα(R)× Vβ(R)→ Viα+jβ(R).
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Methods involved in the proof Elementary subgroup and Steinberg group

Concrete descriptions of Vα

Let G0 ⊂ G be a split subgroup of type Cn, so G0(k) ∼= Sp2n(k).

For a long root α, the relative root space is one dimensional, and the root subgroups of G and
G0 coincide, so Vα = Ga.

For a short root α, the relative root space is two dimensional, and the associated root
subgroup of G0(k) is the fixed subset of the Galois action of Gal(L/k) on the root subgroup
Xα(Vα(k)) ⊂ G(k), and Vα = G2

a. In this case, identify Vα(k) ∼= k ⊕ k ∼= L.
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Methods involved in the proof Elementary subgroup and Steinberg group

The Steinberg group, 1

The Steinberg group G̃(R) is the abstract group generated by symbols X̃α(v) for α ∈ Φk and
v ∈ Vα(R), subject to relations (1) and (3) above.

1 X̃α(v) · X̃α(w) = X̃α(v + w)
2
[
X̃α(u), X̃β(v)

]
=

∏
i ,j≥1

iα+jβ∈Φk

X̃iα+jβ
(
Nαβ

ij (u, v)
)

The natural projection is πR : G̃(R)→ E (R), X̃α(v) 7→ Xα(v).
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Methods involved in the proof Elementary subgroup and Steinberg group

The Steinberg group, 2

Theorem (Stavrova, 2020)
For G an isotropic simply connected reductive group over a local ring R, if all irreducible
components of ΦP have rank ≥ 2, then ker πR is central in StP(R) = G̃(R).

Corollary (I. Rapinchuk and R, 2021)

For G = SU2n(L, h) and R a product of local k-algebras, ker πR is central in G̃(R).

Sketch of proof: G̃(−) commutes with finite products (a little bit of work) and E (−)
commutes with finite products, then apply theorem.
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Methods involved in the proof Algebraic ring associated to an abstract representation

The algebraic ring associated to an abstract homomorphism, 1

R - commutative unital ring.
K - algebraically closed field of characteristic zero.
eij(r) - elementary matrix, differs from identity by having r in the ij position.
En(R) - elementary subgroup of SLn(R), the subgroup generated by the eij(r).

Kassabov-Sapir construction: Let ρ : En(R)→ GLm(K ) be an abstract homomorphism
(n ≥ 3). Then A = ρ(e13(R)) has the structure of an algebraic ring, such that
f : R → A, r 7→ ρ(e13(r)) is a ring homomorphism. Addition in A is matrix multiplication,
making use of e13(r) · e13(s) = e13(r + s).
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Methods involved in the proof Algebraic ring associated to an abstract representation

The algebraic ring associated to an abstract homomorphism, 2

Φ - reduced irreducible root system of rank ≥ 2.
G - universal Chevalley group associated to Φ.
eα - for α ∈ Φ, the root subgroup embedding R ↪→ G(R).
(Φ,R) is a nice pair if 2 ∈ R× when Φ contains a copy of B2 and 2, 3 ∈ R× when Φ = G2.

Generalization by I. Rapinchuk: Assume (Φ,R) is a nice pair. Let ρ : G(R)+ → GLm(K ) be an
abstract homomorphism. There is α ∈ Φ such that Aα = ρ(eα(R)) has the structure of an
algebraic ring, such that fα : R → Aα, r 7→ ρ(eα(r)) is a ring homomorphism. For any
α, β ∈ Φ, Aα ∼= Aβ as varieties, so identify them all with a single algebraic ring A.
For α ∈ Φ, there is an injective regular map ψα : A→ H = ρ(G(R)+) such that TFDC.

R G(R)+

A H

eα

f ρ

ψα
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Methods involved in the proof Algebraic ring associated to an abstract representation

The algebraic ring associated to an abstract homomorphism, 3

New extension: Let G = SU2n(L, h) and let ρ : G(k)→ GLm(K ) be an abstract
homomorphism. There is α ∈ Φk such that Aα = ρ(Xα(k)) has the structure of an algebraic
ring, such that fα : k → Aα, r 7→ ρ(Xα(r)) is a ring homomorphism. For α, β ∈ Φk , Aα ∼= Aβ
as varieties, so identify them all with a single algebraic ring A. For α ∈ Φk , there is a regular
map ψα : Vα(A)→ H = ρ(G(k)) such that TFDC.

Vα(k) G(R)+

Vα(A) H

Xα

Vα(f ) ρ

ψα

For long roots, Vα(k) = k and Vα(f ) = f so this is just the same diagram as for the split
subgroup G0 ∼= Sp2n. But for short roots Vα(k) = L so this is new.
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Methods involved in the proof Lifting to the Steinberg group

Lifting to the Steinberg group

Recall, the goal is to construct A, σ, and f : k → A inducing F : G(k)→ G(A) making this
commute.

G(k) GLm(K )

G(A)

ρ

F σ

Strategy: write down what a lift of σ to G̃(A) should be, then descend to G(A).
Define σ̃ : G̃(A)→ H by σ̃

(
X̃α(v)

)
= ψα(v). Then TFDC.

Vα(A) G̃(A) G̃(k) G̃(A)

H G(k) H

X̃α

ψα
σ̃

F̃

πk σ̃

ρ
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 1

The solid arrows make a commutative diagram. To complete the proof we need a k-rational
morphism σ completing this diagram.

G̃(k) G̃(A)

G(k) G(A)

H

F̃

πk
σ̃

πA

F

ρ

σ
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 2

Lemma
σ̃ : G̃(A)→ H is surjective, and H is connected and perfect.

Set H = H/Z (H) and ν : H → H the quotient map.

Proposition
There exists a group homomorphism σ : G(A)→ H such that σ ◦ πA = ν ◦ σ̃.

Proof.
Because G is quasi-split and A is a product of local K -algebras, G(A) = E (A), so
E (A) ∼= G̃(A)/ ker πA. By previous lemma σ̃ is surjective and ker πA is central in G̃(A), so
σ̃(ker πA) ⊂ Z (H), so σ̃ induces σ : G(A)→ H with the required property.
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 3
The solid arrows commute. Next: show σ is algebraic.

G̃(k) G̃(A) G̃(k) G̃(A)

G(k) G(A) G(k) G(A)

H H

H

F̃

πk
σ̃

πA

F̃

πk πA
σ̃

F

ρ

σ

F

σ

σ ν

Sketch of proof: Write G(A) as a product of root groups in some fixed order, and use some
technical algebro-geometric lemmas from [Rap2013].
Next: lift σ to obtain σ.
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 4

Given an ideal I ⊂ A, we have the congruence kernel G(A, I) = ker
(
G(A)→ G(A/I)

)
.

Lemma
Let J ⊂ A be the Jacobson radical. Then G(A, J) is nilpotent and there is a Levi
decomposition G(A) = G(A, J)nG(A), where A ⊂ A is a semisimple subalgebra such that
A = A⊕ J as K-vector spaces and A ∼= A/J as K-algebras.

Note. A is a finite-dimensional K -algebra =⇒ A is Artinian =⇒ Jd = 0 for some d ≥ 1
=⇒ A with these properties exists by Wedderburn-Malcev Theorem.

Lemma
If the unipotent radical Ru(H) is commutative and charK = 0, then Z (H) ∩ Ru(H) = {e},
and Z (H) is finite and contained in any Levi subgroup of H.
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 5

Next step: lift σ to obtain σ.

G̃(k) G̃(A) G̃(k) G̃(A)

G(k) G(A) G(k) G(A)

H H

H

F̃

πk
σ̃

πA

F̃

πk πA
σ̃

F

ρ

σ

F

σ

σ ν
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 6
Theorem
Assuming Ru(H) is commutative and charK = 0, there exists a morphism of algebraic groups
σ : G(A)→ H such that ν ◦ σ = σ, and this σ makes the previous diagram commute.

Proof.
Recall the Levi decomposition G(A) = G(A, J)nG(A). Then we have Levi decompositions
H = U nS and H = U nS where

U = σ(G(A, J)) S = σ(G(A)) U = Ru(H) S = (ν−1(S))◦

By previous lemma, Z (H) ⊂ S so S = S/Z (H) and ν|U : U → U is an isomorphism.
Because ν : H → H is a central isogeny and G(A) is simply connected, there exists a lift
σS : G(A)→ S such that ν|S ◦ σS = σ|G(A).
Set σU = ν|−1

U ◦ (σ|G(A,J)), then σ = (σU , σS) : G(A)→ H is a morphism of algebraic groups
and ν ◦ σ = σ.
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 7

Now we have σ. Next we check that the upper triangle commutes.

G̃(k) G̃(A) G̃(k) G̃(A)

G(k) G(A) G(k) G(A)

H H

H

F̃

πk X
σ̃

πA
σ̃

?

X

F̃

πk πA
σ̃

?F

ρ

? σ

F

σ

σ

X

ν
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 8a

Proof (continued).

Define χ : G̃(A)→ H by g 7→ σ̃(g)−1 · (σ ◦ πA)(g).

G̃(k) G̃(A)

G(k) G(A)

H

F̃

πk X
σ̃

πA

?F

ρ

? σ
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 8b

Proof (continued).

Define χ : G̃(A)→ H by g 7→ σ̃(g)−1 · (σ ◦ πA)(g). We
have ν ◦ σ̃ = σ ◦ πA = ν ◦ σ ◦ πA. So the image of χ is
contained in ker ν = Z (H). Since G̃(A) is perfect, χ
must be trivial, so σ ◦ πA = σ̃.

G̃(k) G̃(A)

G(k) G(A)

H

F̃

πk X
σ̃

πA

X
F

ρ

? σ
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Methods involved in the proof Descending to a rational representation

Descending to a rational representation, 8c

Proof (continued).

Define χ : G̃(A)→ H by g 7→ σ̃(g)−1 · (σ ◦ πA)(g). We
have ν ◦ σ̃ = σ ◦ πA = ν ◦ σ ◦ πA. So the image of χ is
contained in ker ν = Z (H). Since G̃(A) is perfect, χ
must be trivial, so σ ◦ πA = σ̃. Since πk is surjective,
that commutativity of the remaining triangle is a
formality.

G̃(k) G̃(A)

G(k) G(A)

H

F̃

πk X
σ̃

πA

X
F

ρ

X
σ
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Methods involved in the proof Descending to a rational representation

New result for SU2n(L, h)

Theorem (I. Rapinchuk and R, 2021)
Let G = SU2n(L, h) and let K be an algebraically closed field of characteristic zero. Given
abstract homomorphism ρ : G(k)→ GLm(K ), set H = ρ(G(k)). If Ru(H) is commutative,
then there exists a commutative finite-dimensional K-algebra A, a ring homomorphism
f : k → A with Zariski-dense image, and a morphism of algebraic K-groups σ : G(A)→ H
such that ρ = σ ◦ F , where F : G(k)→ G(A) is the group homomorphism induced by f .

G(k) GLm(K )

G(A)

ρ

F σ
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Methods involved in the proof Descending to a rational representation
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